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The scattering of pions by light nuclei is calculated using an approximate, high-energy, small-angle 
multiple-scattering expansion which neglects off-the-energy-shell scattering. The approximations needed 
to obtain this expansion from an exact multiple-scattering theory are examined. It is found that the unknown 
contribution of the off-the-energy-shell scattering makes any calculation of pion-nucleus scattering unreliable 
for large angles. Using pion-nucleon phase shifts and electron-scattering data, results are obtained for the 
scattering of pions of about 80 MeV by lithium, carbon, and oxygen. 

I. INTRODUCTION 

SOME calculations1-3 of the scattering of pi mesons 
by nuclei have used the impulse or single-scattering 

approximation, without corrections for Coulomb or 
multiple scattering. Others4-7 have been based on the 
optical model. The optical potential Vc is obtained by 
approximately summing a formal multiple-scattering 
expansion, and the resulting differential equation is 
solved numerically. 

In this paper we will evaluate corrections to the im
pulse term with a high-energy, small-angle approxima
tion obtained from a complete multiple-scattering ex
pansion. The method, which is basically that of Glauber,8 

gives analytic results in reasonable agreement with the 
measured scattering2'4,5 of pions of about 80 MeV by 
lithium, carbon, and oxygen; the parameters used are 
those derived from pion-nucleon and electron-scattering 
data. 

The optical model has the advantage of not making 
these approximations. A minor disadvantage of the 
optical model is the necessity of solving numerically; 
however, modern computers are quite adequate for 
this task. 

Nevertheless, we will see that the high-energy and 
small-angle approximations are reasonable in this prob
lem for angles up to the diffraction minimum at 00^70°. 
A more serious limitation is the omission of off-the-
energy-shell scattering. Little is known about the be
havior of the two-body scattering amplitude (q'|/|q) 
for | q' 15̂  | q |; the Glauber method neglects it com-
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pletely. In the optical model, a definite choice for 
(qr 111 q) °ff the energy shell is required in order to calcu
late Vc(r). The contribution of the off-shell amplitude 
to the cross section is sensitive to the specific model 
assumed, and is substantial. Since it tends to drop off 
more slowly than the on-the-energy-shell scattering, this 
makes all calculations of the large-angle pion-nucleus 
scattering unreliable. An advantage of our procedure is 
that the various contributions to the total amplitude 
are separated and can be studied independently; if one 
has a model for off-shell scattering, this can be included 
also. 

We begin in Sec. II by summarizing the approximate 
multiple-scattering theory due to Glauber and a minor 
modification to the theory. In Sec. I l l we obtain this 
from the exact multiple-scattering formalism of Watson9 

and in Sec. IV we present the actual calculations and 
results. We conclude with an Appendix which discusses 
some of the approximations in detail. 

II. THE HIGH-ENERGY APPROXIMATION 

Glauber8 has developed an approximate method for 
calculating high-energy, small-angle scattering. He con
siders a wave <j>Q=eiqz incident upon a potential V of 
magnitude V0 and range R. If Vo/E{q)<^l and qRy>l, 
little reflection or refraction occurs at the boundary, and 
the wave inside the wall is approximately given by 
rj/q~eiq<il)z. The corresponding scattering amplitude is 
proportional to (0,F#); this gives 

/(Aq) 
\27ri)J 

d2be-***+[eix<M — l'], (2.1) 

where b is the impact parameter, Aq^q'—q, and the 
integral is over a plane normal to q. The function %(b) 
represents the total phase shift the wave suffers in 
traversing V. If the potential is known, x(b) can be 
calculated from 

/

oo 

V(b,z)dz; 
-oo 

v is the velocity of the particle. Equation (2.1) is not 

9 K. M. Watson, Phys. Rev. 105, 1388 (1957); Rev. Mod. Phys. 
30, 565 (1958); also earlier papers given here. 
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expected to be accurate for large Aq in view of the 
approximation for \f/q. 

If X(b) has azimuthal symmetry, with the definition 

r(b) = exppx(b)]-l , 

Eq. (2.1) becomes 

(2.2) 

f(Aq) = (-\ f J<[2qb $m(^-X\v(b)bdb. (2.3) 

Here q sin0 has been replaced by 2gsin(0/2), corre
sponding to a more symmetric treatment of q and q', i.e., 
placing the b plane in (2.1) perpendicular to (q+qO/2 
rather than to q. 

In this approximation, the scattering of a particle by 
A fixed scatters at r»- is obtained by replacing x(b) by 
Y, Xi(h—hi), which yields 

*(Aq,b*) 

\2wiJJo 

\2iri)j 6 

M'h{Ili~iA [l+I\<b-bt-)]-l}<CT 

^niiUh-h) 

+?2i<jTi(h-hi)Tj(h-bj) 

+Zi<j<k r<(b-b<)r i(b-by)rJb(b-b*)+- • -ypb. 

This can be interpreted as a single-scattering term, a 
double-scattering term, etc. 

If the scatterers are nucleons, the expectation value 
of F(Aq,hi) for the nuclear ground state yields the 
elastic-scattering amplitude. Neglecting correlations,10 

i.e., setting 

<ri(b-b,)rxb-by))=<r,(b~b,)><rxb-bi)), 
Glauber obtains finally 

F(Aq)=n\ f J$2qb sin(-X\s(b)bdb, (2.4) 

where 

Sib^ZiiT^+JLiKiiTiXTj) 

+ Z w (r,)(ri)(r,)+.... (2.4a) 
We will see in the next section that a better approxima
tion is the "modified" Glauber expansion, 

s(ft)=E< <r<>+2-* £,£,„< (r,)(ry) 
+2~2 Zi Hi* I ^ i (r,)(r i)(r fc)+.... (2.4b) 

Equations (2.4) will form the basis of our calculation. 
The two forms for S(b) differ in the third and succeeding 
terms by considerable factors; if all the (I\-) are equal, 

10 For a discussion of this approximation, see Ref. 8, p. 394; also 
M. A. B. Beg, Phys. Rev. 120, 1867 (1960); R. J. Glauber, 
Physica22, 1185 (1956). 

the ratio of the triple scattering term of Eq. (2.4b) to 
that of (2.4a) is (f) (A-l)/(A-2). 

The function (I\-(6)) is needed to evaluate F(Aq). If 
the nucleon density is p(r), 

where 

<ri(b))=y,r,(b-bi)P(bi)J
2^, (2.5a) 

p(b<) = / p(bi,Zi)dzi, / p(r)</V= 1 . 

This can be rewritten as 

where 

<r<(6)>= (2TT)-2 Jei^Ti(Aq)p(Aq)d"Aq, (2.5b) 

p(Aq)= J-**•*'p(h')dW. 

(2.6) 

Glauber's conditions of qR2>l and Vo/E(q)<£.l are 
not well satisfied in our problem. However, Eqs. (2.4) 
give a connection between two-body scattering ampli
tude / and the many-body amplitude F which may be 
accurate even if / itself cannot be adequately obtained 
by these methods. Glauber has pointed out that the 
single scattering term in F is identical to that obtained 
from the impulse approximation, which is valid under 
less restrictive assumptions, e.g., for large angles. We 
will now examine the validity of the higher order scat
tering terms by using Watson's exact multiple-scattering 
formalism. 

III. EXACT MULTIPLE-SCATTERING THEORY 

In a series of papers, Watson9 has developed an exact 
multiple-scattering theory. We will briefly summarize 
its essentials, and then make the approximations needed 
to obtain Eqs. (2.4) from this theory. 

Consider a particle incident upon a nucleus of A 
nucleons. The Hamiltonian is 

H==[HN+h2+Y, Vt^Ho+V, (3.1) 

where HN is the nuclear Hamiltonian, h is the incident 
particle's kinetic energy operator, and Vi is the two-
body interaction. The scattering of the particle is 
given by 

T=V+VarlT, (3.2) 
where 

a—Ea—Ho+ie, 

and Ea—E(q)+Wy, where W7 is the initial energy of 
the nucleus, 

file:///2wiJJo
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A formal solution of Eq. (3.2) is 

+ Zi H^i E ^ i t/a-n/a-%'+ • • • , (3.3) 

where the bound two-body amplitude t{ satisfies 

ti=Vi+Via-n/. (3.4) 

The terms of Eq. (3.3) correspond to sequences of scat
terings such that no two successive scatterings are due 
to the same nucleon. 

The elastic scattering amplitude Tc is the "coherent 
part" of T. For an operator 0, the coherent part Oc is 
denned by 

<qV|a |q7>=<q '7 | |qY> if Wy=WY, 
= 0 if Wy^Wy. 

Hence 
T c - L Ue'+T,ii:&i(ti'crH/)e+ • • •. (3.5) 

The optical potential is defined by 

Tc=Vc+VcarlTc. (3.6) 

Neglecting excited nuclear states gives 

(ti a~H/ar%f- • ̂ c-tJarHjc'crHJ'• • •; (3.7a) 

for large A, 

ZiZ^i' • -Ua-H/- • • ~ £ i 2 > ' 'U'a-H/' • •. (3.7b) 

Equation (3.5) now implies 

^ c — 2-*d tic ~T~ 2L/ He & -L c • 

Hence, in this approximation, Watson obtains 

( q ' l ^ | q > = E i ( q ' | f e , | q ) , (3.8) 
where 

(q / | ^ / |q}-(q / | / , - [q)p(Aq) . (3.9) 

The replacement of t' by the free two-body amplitude, 
t, which involves neglecting the effects of nucleon bind
ing on t, is essentially the impulse approximation. 

Two models which have been applied to pion-nucleus 
scattering are4,5'7-11 

( q / | / | q ) ~ ( q | / | q ) = 7 j (3.10a) 
and5'6 

< q ' | / | q > ~ H r S ( q - q ' ) , (3.10b) 

where y, a, and 8 are complex constants known from 
pion-nucleon scattering. These lead to 

and 
{t\V^)-Ayp(t)^{x) (3.11) 

(r\ F c ^ ) - ^ a p ( r ) ^ ( r ) + ^ 5 v [ P ( r ) V ^ ( r ) ] , (3.12) 

respectively. The first model assumes Eq. (3.8) is 
dominated by p(Aq), and that the variation in t is rela
tively unimportant; the second attempts to take into 
account the dominant ^-wave character of the two-body 
interaction. Equation (3.10b) is a good approximation 

11 E. Auerbach (private communication). 

for t (on the energy shell) up to about 100 MeV. How
ever, the first model cannot be made to fit the data at 
all angles. The second model, in a somewhat altered 
form, fits if the six parameters used (real and imaginary 
parts of a and 8, nuclear radius and surface thickness) 
are varied sufficiently from the usual values. 

These models must assume that (3.10a) or (3.10b) 
holds if | q | T^ | q' |. There is no reason to believe that 
this is true. 

To obtain the approximation discussed in Sec. II , we 
begin with Eq. (3.5) and make the approximation (3.7a). 
Also, we write 

1 1 

~E(q)-E(q")+ie E(q)-E(q") 
- t t r5 [Efa ) -£ (?" ) ] ' 

and neglect the first term, corresponding to off-the-
energy-shell scattering. Thus we obtain 

-i*Zi*j W\tic/W/)W'\tJc
/\q) 

X8LE(q)-E(q')y*q"+~-

= L * ( q / l ^ | q ) p ( q - q / ) 

-i*LE(q)/q] Zi,jJ <q'|/<|q">p(q"-Q') 

X ( q / / | / i | q ) p ( q / / - q ) g 2 ^ / / + - - - . 

The angular integrations q"2dQ", • • •, in the second 
and higher terms are equivalent to integrating d2q", • • •, 
over the surfaces of spheres of radius q. If these spheres 
are replaced by planes tangent to them at § |q+q ' | , 
and the relation 

W\t\q)=-f(Aq)/(27ryE(q) 

= -qT(Aq)/(2ic)HE(q) 

is used, we obtain Eqs. (2.4) and (2.4b). 
In the Appendix, the double scattering term is studied 

in detail for our model. There it is shown that the 
on-the-energy-shell scattering given by the Glauber and 
Watson expressions are equivalent in the limiting case of 
high momentum and small angle, i.e., [ l + c o s ( # / 2 ) ] ~ 2 . 
For the actual parameters appearing in our carbon 
calculation, the two differ by 15% or less for all angles. 
This corresponds to about 10% in the cross section for 
6<6o. I t also appears that the easily evaluated higher 
order Glauber terms represent a fair approximation to 
the corresponding complicated Watson terms. However, 
since these higher order terms are relatively important 
for 0>#o, the results for large angles are not expected 
to be very accurate. 

The off-shell scattering contribution to the double-
scattering amplitude, which is omitted in the Glauber 
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approximation, is found to be comparable to the above 
errors for small angles. However, for large angles, it is 
of the same order of magnitude as the total on-the-
energy-shell amplitude. Since its explicit value is sensi
tive to delicate cancellations in the integral, it is not 
possible to do more than estimate its order of magnitude. 
This means a basic uncertainty of perhaps 10% in the 
cross section at small angles, and of order 1 at large 
angles. This is clearly true both for our calculation and 
for the corresponding optical-model calculation.3-lla 

IV. CALCULATIONS AND RESULTS 

In order to calculate pion-nucleus scattering with 
Eqs. (2.4), we must have an explicit form for 

<I\(b)>= ( r , < b - b ; ) p ( b ; ) ^ (2.5a) 

= (2TT)-2 / eiA^bTi(Aq)p(Aq)d2Aq, (2.5b) 

r<(Aq)s(2iri/g)/<(Aq). (2.6) 

The function V | Aq | is known experimentally only for 
| Aq|<2#; to calculate its transform T(b) or to evaluate 
(2.5b) requires that we know it for all Aq. 

Since (2.5b) contains the form factor p(Aq) which 
drops off rapidly for large Aq, the integral is presumably 
not very sensitive to T(Aq) for large arguments. This 
suggests substituting into Eq. (2.7b) the 5 plus P-wave 
form for pion nucleon scattering, 

f(Aq)^a+f3q-q7q2 

and assuming its validity for all Aq. This we will refer to 
as model B, and to the corresponding (T) as (TB). 
Alternatively, we can argue that I\-(b) has a short range; 
if the nucleus is large enough, its precise form is unim
portant. We assume for convenience that T has the form 

r^(b) = 7 e x p [ - & 2 A 2 ] , 

and fit its transform T(Aq) to Eq. (4.1) for small Aq. 
This leads to 

7=«(«+0) 2 / | 8 , 

P = W(a+p), 
l l a Note added in proof. It is possible to obtain Glauber's re

sults by using an approximate form of the momentum space 
Green's function, i.e., by using 

q" = q+n, | n | « | q | 
or 

E(q)-E(q")+ie~ - (q • n/2/*) +ie. 

One finds then that the contribution due to off-the-energy-shell 
scattering by nucleon 1 and then by nucleon 2 is exactly cancelled 
by the sequence 2,1. Thus, the off-shell scattering is not neglected 
but rather vanishes in this linear approximation. I would like to 
thank Professor Glauber for a useful discussion of this point. 

and 
IU(Aq) = (a+0) e x p [ - A ^ 2 / 2 ^ 2 ( a + « ] . (4.2) 

[The same result could have been obtained by "ex
ponentiating" Eq. (4.1).] This will be referred to as 
model A. 

Note that while T^(Aq) and Tjs(Aq) have the same 
Aq dependence for small Aq, TA goes to zero rapidly 
for Aql^>l and TB diverges. Nevertheless the corre
sponding cross sections are essentially the same for 
6< do, verifying that the nuclear density does dominate 
in <r). ^ 

The lithium, carbon, and oxygen nuclei are (1^) shell 
nuclei and are well described by a density function12 

p(r) = p 0 [ l + ( Z - 2 ) f 2 / 3 a 2 ] e x p ( - r 2 / a 2 ) , (4.3) 
or 

p(Aq) = (l+dxAq*) exp(~iAg2a2) , 

d1=-(Z-2)a2/6Z, 

where a is about 1.6 F according to electron-scattering 
data. Thus, Eq. (2.7b) gives 

< r* (b )H ( — ) fe^ico+CiAq*) 

Xil+diAq^e-^^WAq 

= Q MAqbXco+dAq*) 

Xil+d^q^e-^^^AqdAq 

^ E . - I ' J , * 8 ^ ^ . (4.4) 

Here we have used 

1 
= ZWdxy-^x^e^l^wu* (4.5) 

and have defined the Si by 

si= (2i/qa%Co+4.(c1+cQd1)/a
2+32c1d1/a^, 

s2= - (8i/qa*Z(c1+c0d1) + 16c1d1/a
2'], (4.6) 

sz=(32i/qa10)Zc1d1']. 

Since we have to treat both protons and neutrons, there 
are two (T^ ' s , with Sip and Sin, respectively. 

Substituting Eq. (4.4) into Eqs. (2.4) gives after 
some algebra 

F=HFn, F » = £ I - O W / ? I . » - I , (4.7) 

Fi.m= (<7/OE<-i8n+1 Q(l,m,i)I(Aq, l/a*+m/a*9 i). (4.8) 

Here Fn is the amplitude for w-fold scattering; Fittn is the 
amplitude for scattering by / protons and m neutrons; 

12 D. G. Ravenhall, Rev. Mod. Phys. 30, 430 (1958). 

jg Aq2~\ r°° 
1 Ua+fr^Co+^Aq*, (4.1) I(b,P,p)= J0(yb)e-^y^dy 

2(a+0) <72J Jo 
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FIG. 1. 80-MeV ir~ on carbon, a=1 .6F , Anderson phase shifts. 
The impulse approximation and multiple-scattering corrections 
through fourfold scattering using models A and B and the Glauber 
series (2.4a). Cross sections are in millibarns. 

/ is defined in Eq. (4.5). For the original Glauber series S 
defined by Eq. (2.4a), the Q's satisfy the recursion 
relations 

l,m>l. (4.9) 

Here j is summed to the lesser of i and 3. Also, 

e(o,o,*)=o, 
Q(lfl9i) = Zsf, i<3 

= 0, i>3 (4.10) 

Q(0,l,i) = Nsi», i<3 
= 0, i>3. 

If S is defined by the modified Glauber series, Eq. 
(2.4b), then the factors in brackets in Eqs. (4.9) become 
complicated. An approximation which gives an error of 
order Fn/A for n>3 is obtained with the replacement of 
these factors for n>3 by l(Z-l+81>i)(l+m)/2f} and 
£(iV— l+ditm)(l+m)/2fn], respectively. 

Similar results are obtained with model A with 

co- Co, Ci—»0, a2 —> a2+l2 

used only to evaluate the multiple-scattering corrections. 
So far we have not discussed Coulomb effects or 

kinematics. If the Coulomb potential is included in 
Sec. II, an additional I \= Tcoui appears in the multiple-
scattering expansion, Eqs. (2.4). We retain Tcoui only in 
the single-scattering term. Since the pion mass is not 
negligible compared to the nucleon mass, we evaluate 
the impulse term for the pion-nucleon center of mass 
frame; since the remaining terms are smaller and more 
isotropic, we treat the entire amplitude in this way.13 

For ir-p scattering, neglecting the spin flip term, 

for 7T~-W, 

qap=(a3+2ai)/3, 

q$p= (2a33+03i+4ai3+2an)/3; 

gjff»= 2038+081. 

Here ai=exp(i8i) sin5», and the 82T,2J are the usual 
phase shifts. For TT+ scattering, ap<-*an and pp<-+ /?». 
We have used the <5* obtained14 from Anderson's empiri-

I W U 

IOO 

do-
da 

10 

i 

\ 

: \ 
>\ 

- \ 

- \ 

X 

i , , w 

<rw 

°5B 

3 . 

.<Z?^-
'7 

i # i i 
20° 40° 60° 80° 

FIG. 2. 80-MeV iT on carbon, a = 1.6 F, Hull-Lin phase shifts. 
Modified Glauber series (a) and unmodified (er) for model B. &BB 
and <T5B differ by 1% or less for 0<7O°; the former is shown here 
only for 0>85°. 

The single scattering or impulse term X) ^*(Atf)p(A0) is 
taken to be the same as in model B; the function TA is 

13 G. P. McCauley and G. E. Brown, Proc. Roy. Soc. (London) 
71, 893 (1958). 

14 H. L. Anderson, Proceedings of the Sixth Annual Rochester 
Conference on High-Energy Nuclear Physics (Interscience Pub
lishers, Inc., New York, 1956), pp. 1-20; M. H. Hull and F. Lin 
(private communication). 



S C A T T E R I N G O F P I O N S BY L I G H T N U C L E I B917 

HULL-LIN PHASES 

ANDERSON PHASES 

FIG. 3. 80-MeV ir~ on carbon, a= 1.6 F. 0-55 plotted 
with Anderson and Hull-Lin phase shifts. 

cal formula and also a newer set found by Hull and Lin 
which differs slightly in the energy range under 
consideration. 

The results are remarkably insensitive to the choice 
of model A or B, the Glauber or modified Glauber series, 
and the Anderson or Hull-Lin phases. Let anA be the 
cross section for model A including all terms in the 
Glauber series through n-fold scattering, let anA° be the 
same cross section without the Coulomb amplitude, and 
similarly for model B. Let a be the same quantity for 
the modified Glauber series. Figures 1 to 4 are plotted 
for 80 MeV if~ on carbon, with the radius parameter 
a= 1.6 F. Figure 1 shows that aA and <JB are nearly equal 
for 0<0O, i.e., both forms for T give similar results. 
Although the different weights in the Glauber and 
modified Glauber series make V%B and o^s differ, Fig. 2 
shows that the total effects nearly cancel. Figure 3 
shows that the Hull-Lin phases and Anderson phases 
give results differing by a few percent. 

In Fig. 4 the effect of varying the radius parameter 
a is seen to be large only for 0>0o. 

At small angles, Coulomb and multiple-scattering 
corrections are considerable and tend to cancel forV~ 
but add for 7r+, as is seen in Figs. 5 and 6. Thus a simple 
impulse approximation fits fairly well for if~ but not ir+, 
as was found by Williams et at.2 

Figures 7 to 10 make further comparisons of the calcu-

FIG. 4. 80-MeV TT on carbon, Hull-Lin phase shifts. 
at>B for radius parameter a = 1.5, 1.6, 1.7 F. 

FIG. 5. 80-MeV TT~ on carbon, a—1.6 F. Hull-Lin phase shifts. 
Cross sections without (0-0) and with (a) the Coulomb amplitude. 
Note tendency of Coulomb and multiple-scattering effects to 
cancel. Data are from Baker et al. (Ref. 5). 
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FIG. 6. 78-MeV TV+ on Li, a= 1.7 F, Hull-Lin phase shifts. Cross 
sections with and without Coulomb amplitude. Data are from 
Williams et al. (Ref. 2). 

FIG. 8. 87.5-MeV iT on carbon, a = 1 . 6 F , Hull-Lin phase 
shifts. Data are from Edelstein et al. (Ref. 5). 

20' 

FIG. 7. 69.5-MeV TT~ on carbon, a= 1.6 F, Hull-Lin phase 
shifts. Data are from Edelstein et al. (Ref. 5). 

100* 

FIG. 9. 87.5-MeV ir~ on oxygen, # = 1.6F, Anderson phase 
shifts. <T§B is plotted. It does not differ much from O-±B or <nA- How
ever, the modified series does not seem to converge well, indicating 
probably that the multiple-scattering corrections are too crudely 
approximated for this large a nucleus. 
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Kij is given by 

B919 

X(E-Er+U)-Wg" 

/ d \ V d\> 
•jl -= ( - ) i+3\ 

axv Vdx/ 
(A3) 

X=V*=.R2 

where E=E(q), E" = E{q"), and 

J(X,X') = J exp[ - ( q '~q"y \ ' - (q-q")2X] 

X ( £ - £ " + * « ) - W 

r00 r (2g,/^)"| (A4) 
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FIG. 10. 78-MeV ir~ on lithium, a=1 .6F , Hull-Lin phase 
shifts. Data are from Williams et al. (Ref. 3), for 0<35° and from 
Baker et al. (Ref. 5) for 0>4O°. 

lated cross sections with experimental data. We note 
that the calculated curves are in general agreement with 
the data for 0<0O, differing by about 20% at some 
angles for carbon. This is consistent with our estimate 
of the errors, i.e., about 10% each for the multiple ~, r . , . „ , , , n , , 
scattering approximations and the unknown off-the- T h e first m ^ r a 1S we l l

1 behaved, and the second 
energy-shell scattering amplitude. The fit is better for vanishes. Using the nonre ativistic approximation for 
lithium and poorer for oxygen, as we might expect. simplicity, or (E-E ) = (q*-q 2)/2M, we obtain 
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APPENDIX 

In this appendix we will discuss in somewhat more 
detail the approximations made in the double-scattering 
terms. Our models A and B are both expressible as 

WI tc | q) = E< CiiAq/qY* exp(- A ^ 2 ) . (Al) 

Thus a double-scattering term is of the form 

WI tca-Hc | q) = *£* c&Kij/qW). (A2) 

x=\q+q'\R, y=q"R, z = qR, 

and the first few K^ are 

Foo=sinh(2^) exp(—2y2)y/x, 

F1Q=F0i= Z-smh(2xy)(y2-z2+i)+yx cosh(2ry)] 
Xexp(~23;2)^A, (A7) 

Fn=[smh(2xy)l(y2+z2+i)2-z2+y2x22 
— 2yx cosh.(2xy)(\+y2+z2+z2/x2)~] 

Xexp(—2y2)y/%. 
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The corresponding result in the Glauber theory is 
obtained by integrating the 5-function part of (A3) over 
a plane tangent at (q+qO/2 to a sphere of radius q. 
The result is a set of functions Gtj similar to the Ftj. 
Goo is obtained from F0o, for example, by setting 

sinh(2yx) = sinh(21 q+q' \ qR2) 
= s i n h [ 4 ^ 2 - Ag2£2/(l+cos0/2)] 
« J e x p [ 4 ^ 2 - | A ^ 2 ] , 

and 
z/x=qR/\q+q'\R~h 

This is clearly a good approximation for qRS>l and 
(l+cos0/2)«2; however, if we plot F00 and Goo for 
qR^l, we find that FQQ and G0o differ by 15% or less 
for all angles. F0i and Goi differ a bit more; the other 
terms, which are less important, have not been com
pared explicitly. 

Evaluation of triple scattering terms in the Watson 

I. INTRODUCTION 

DURING the last few years, many nuclear proper
ties have been successfully described by means of 

the superconductivity model, or pairing theory.1"3 For 
instance, the model accounts for the odd-even mass 
difference, the energy gap in even-even nuclei, and 
nuclear transition probabilities. With some refinements 
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expansion is difficult for this model. However, if tc has a 
radius parameter R, tca"~Hc has R/y/2. Thus, tcarl{tcarltc) 
is qualitatively similar to the above integrals but with 
one radius reduced. Hence the triple scattering and 
higher Glauber terms are useful only as rough estimates; 
for 0> 60y where they are relatively important, our calcu
lation is not reliable. 

The off-shell scattering, which is omitted in our calcu
lation, is given by the integrals in Eq. (A6). We have 
evaluated the off-shell parts of K0(i, Koh and Ku numeri
cally. If the integrals are split into y<z and y>z parts, 
we find that the two are comparable in magnitude and 
opposite in sign. If the d in Eq. (Al) are given a (q"/q)n 

dependence and included in the integrals, they change 
greatly. Typically the off-shell amplitudes for model A 
are 10 or 20% of the corresponding on-the-energy-shell 
scattering amplitudes for small 0, but are often of the 
same order or larger for d>90. The off-shell amplitudes 
for model B are somewhat larger. 

it is also possible to calculate the energy of the first 
excited 2+ and 3~ states as well as their enhanced 
transition rates with good accuracy.4,5 The calculations 
are based upon a knowledge of the unperturbed energy 
levels of the average shell-model field. Due to meager 
experimental information, most calculations have, until 
now, been based upon theoretical estimates of the 
position of the single-particle levels. Since the result of 
the calculations depends very sensitively on the single-
particle levels, and since the theoretical estimates do not 
reproduce the finer details of the single-particle levels 
very well, experimental information on this point is 
very valuable. In previous papers from this laboratory, 
single-particle levels have been located in the zir-

4 M. Baranger, Phys. Rev. 120, 957 (1960). 
* 5, Yoshida, NucL Phys. 38, 380 (1962). 
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Many new energy levels are located in the odd-^4 molybdenum isotopes and spin and parity values are 
assigned. In particular, it is found that the ground-state spins of Mo" and Mo101 are both J+. Occupancy 
numbers and relative single-quasiparticle energies for the 2d5/2, 3si/2, lg7/2, and 2dzi2 single-quasiparticle 
states are obtained. The single-quasiparticle energies for Mo93, which are equal to the single-particle energies 
because Mo92 forms a closed shell, differ only little from those in the isotone Zr91. In spite of this, the 
quasiparticle energies are much lower and the mixing much stronger in the more neutron-rich molybdenum 
isotopes than in the corresponding zirconium isotopes. A pairing-force calculation revealed that the com
paratively small shift in the single-particle levels between zirconium and molybdenum could not account 
for this completely different behavior of molybdenum and zirconium. 


